A Poisson process reparameterisation for Bayesian inference for extremes

نویسندگان

  • Paul Sharkey
  • Jonathan A. Tawn
چکیده

Abstract A common approach to modelling extreme values is to consider the excesses above a high threshold as realisations of a non-homogeneous Poisson process. While this method offers the advantage of modelling using threshold-invariant extreme value parameters, the dependence between these parameters makes estimation more difficult. We present a novel approach for Bayesian estimation of the Poisson process model parameters by reparameterising in terms of a tuning parameter m. This paper presents a method for choosing the optimal value of m that near-orthogonalises the parameters, which is achieved by minimising the correlation between the asymptotic posterior distribution of the parameters. This choice of m ensures more rapid convergence and efficient sampling from the joint posterior distribution using Markov Chain Monte Carlo methods. Samples from the parameterisation of interest are then obtained by a simple transform. Results are presented in the cases of identically and non-identically distributed models for extreme rainfall in Cumbria, UK.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian change point estimation in Poisson-based control charts

Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...

متن کامل

Semi-parametric modeling of excesses above high multivariate thresholds with censored data

How to include censored data in a statistical analysis is a recurrent issue in statistics. In multivariate extremes, the dependence structure of large observations can be characterized in terms of a non parametric angular measure, while marginal excesses above asymptotically large thresholds have a parametric distribution. In this work, a flexible semi-parametric Dirichlet mixture model for ang...

متن کامل

A Nonparametric Mixture Modeling Framework for Extreme Value Analysis

Abstract: We develop Bayesian nonparametric modeling and inference methods for the analysis of extremes of stochastic processes. We use a point process approach under which the pairwise observations, comprising the time of excesses and the exceedances over a high threshold, are assumed to arise from a non-homogeneous Poisson process. To understand and capture the behavior of rare events, we pro...

متن کامل

Nonparametric Mixture Modeling for Extreme Value Analysis

Abstract: We develop Bayesian nonparametric modeling and inference methods for the analysis of extremes of stochastic processes. We use a point process approach under which the pairwise observations, comprising the time of excesses and the exceedances over a high threshold, are assumed to arise from a non-homogeneous Poisson process. To understand and capture the behavior of rare events, we pro...

متن کامل

Semi-parametric Modelling of Excesses above High Multivariate Thresholds with Censored Data

One commonly encountered problem in statistical analysis of extreme events is that very few data are available for inference. This issue is all the more important in multivariate problems that the dependence structure among extremes has to be inferred. In some cases, e.g. in environmental applications, it is sometimes possible to increase the sample size by taking into account historical or inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016